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Summary

Sanfilippo syndrome type B (mucopolysaccharidosis III
B) is a rare autosomal recessive disease caused by defi-
ciency of a-N-acetylglucosaminidase, one of the enzymes
required for the lysosomal degradation of heparan sul-
fate. The gene for this enzyme, NAGLU, recently was
isolated, and several mutations were characterized. We
have identified, in amplified exons from nine fibroblast
cell lines derived from Sanfilippo syndrome type B pa-
tients, 10 additional mutations: Y92H, P115S, Y140C,
E153K, R203X, 650insC, 901delAA, P358L, A664V,
and L682R. Four of these mutations were found in ho-
mozygosity, and only two were seen in more than one
cell line. Thus, Sanfilippo syndrome type B shows ex-
tensive molecular heterogeneity. Stable transfection of
Chinese hamster ovary cells, by cDNA mutagenized to
correspond to the NAGLU missense mutations, did not
yield active enzyme, demonstrating the deleterious na-
ture of the mutations. Nine of the 10 amino acid sub-
stitutions identified to date are clustered near the amino
or the carboxyl end of a-N-acetylglucosaminidase, sug-
gesting a role for these regions in the transport or func-
tion of the enzyme.

Introduction

The mucopolysaccharidoses are a family of lysosomal
disorders characterized biochemically by failure to de-
grade one or more glycosaminoglycans, because of a
deficiency of the appropriate lysosomal enzyme. In San-
filippo syndrome (mucopolysaccharidosis III) the deg-
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radation of heparan sulfate is specifically affected by
deficiency of one of four enzymes needed to remove
its modified glucosamine residues: heparan N-sulfa-
tase (type A), a-N-acetylglucosaminidase (type B),
acetylCoA:a-glucosaminide acetyltransferase (type C),
or N-acetylglucosamine 6-sulfatase (type D) (reviewed
in Neufeld and Muenzer 1995). In the absence of any
one of these enzymes, heparan sulfate accumulates in
tissues and is excreted in urine. The accumulation of
heparan sulfate must be particularly toxic to the brain,
since deterioration of the CNS is the most prominent
manifestation of Sanfilippo syndrome. Affected children
show developmental delay, mental retardation, and,
eventually, dementia; they may display nearly uncon-
trollable hyperactivity and other behavioral disturbances
for a period that can last many years (Cleary and Wraith
1993). Magnetic-resonance imaging as well as post-
mortem studies show that the brain is markedly atro-
phied, particularly in the cortical region (Tamagawa et
al. 1985; Murata et al. 1989). Life span is usually until
adolescence, but longer survival occurs among the more
mildly affected patients.

The human gene encoding a-N-acetylglucosamini-
dase, NAGLU, recently was isolated, characterized, and
localized to chromosome 17q21 (Friedman et al. 1995;
Zhao et al. 1995, 1996a; Weber et al. 1996; Zhao et al.
1996b). Seven mutations underlying Sanfilippo syn-
drome type B have been reported: 503del10, R297X,
S612G, R626X, R643H, R674H, and Q706X (Aron-
ovich et al. 1996; Zhao et al. 1996a). We now report
10 additional mutations, adding to our understanding
of the molecular heterogeneity of this disorder. To verify
that the missense mutations are disease producing rather
than benign, we studied the expression of similarly mu-
tagenized cDNAs.

Material and Methods

Cell Lines

Fibroblast lines from Sanfilippo syndrome type B pa-
tients GM 00737, GM 01426, and GM 02931 and the
control line GM 04390 were obtained from the Human
Genetic Mutant Cell Repository, Coriell Institute for
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Table 1

Oligonucleotide Primers for PCR Amplification of NAGLU Exons

Segment (Exon[s]) PCR Primer
Amplified Product

(bp)
Annealing Temperature

(�C)

1 (1) 5′-AGACGCCCCAAGGGAGTAT 608 54a

5′-ATTTGGGTGGCAGCGGCTCC
2 (1) 5′-GGGGCTGCACCGCTACCT 443 55b

5′-TCCGCAGGTTCAAAGAGAAG
3 (2) 5′-CCCTGCCCATCTGTTAGACT 595 53b

5′-GCACGTTGAAAGCACTTCTA
3a (1–2) 5′-ACGCCCCCAAGGGAGTATC 1540 55c

5′-GCACGTTGAAAGCACTTCTA
4 (3) 5′-AGCGCCCAGCACAAAGAAG 374 55

5′-CCTCATCTCCCAGGATACACG
5 (4) 5′-GGCCCAGGAAGGGTGGTATTA 309 55d

5′-GGCCCAGAGCTTAAGTTT
6 (5) 5′-AAACCAGGAGCTGTAGAGAAGT 434 54

5′-CTGCCTACCCCTACTGACATCT
7 (6) 5′-GGCCCTCTGTTTCATCACTC 444 55

5′-AAATCTGGCACTGGGTCCTT
8 (6) 5′-GCATCAGCCAGAACGAAGTG 426 52

5′-CCAGCTCCTTGCTCAGGTAG
9 (6) 5′-CAACCGATCTGATGTGTTTG 386 55

5′-TTGGCATAGTCCAGGATGTT
9a (6) 5′-GCTGGCTAGTGACAGCCGCTT 261 54

5′-CTGGTGCTGTTGGAAAGGGAT
10 (6) 5′-GCCGAGGCCGATTTCTAC 345 57

5′-GCGAATCTATCACCAAGAGC
11 (6) 5′-CGTTCTCAGCAAGCAGAGGTA 373 57

5′-CAAGCGTGGCAGCAGTGACC

NOTE.—For each segment, the sense primer is given on the first line, the antisense primer on the second.
Unless otherwise indicated, the cycle parameters were as follows: denaturation at 95�C for 1 min and extension
at 72�C for 30 s, for 35 cycles.

a 10% Dimethyl sulfoxide; 37 cycles.
b 37 Cycles.
c 40 Cycles.
d Extension for 2 s; 37 cycles.

Medical Research. Fibroblast lines IT 41, IT 310, IT 236,
IT 421, and IT 424 were from the collection at the Uni-
versity of Naples. Fibroblasts from patient B and family,
who are of Ethiopian Jewish origin, were kindly pro-
vided by Dr. Gideon Bach. Fibroblasts were cultured as
described elsewhere (Paw et al. 1991).

A Chinese hamster ovary (CHO) cell line deficient in
dihydrofolate reductase, previously used for the expres-
sion of a-L-iduronidase (Kakkis et al. 1994), was cul-
tured in a-minimum essential medium supplemented
with ribo- and deoxyribonucleosides and 5% fetal bo-
vine serum, at 37�C and in 5% CO2.

Identification of Mutations

Conditions for PCR amplification of exons with in-
tron borders and for SSCP analysis (Orita et al. 1989)
have been described elsewhere (Zhao et al. 1996a). The
primers used for PCR amplification are listed in table 1.
Those fragments that gave abnormal migration during
SSCP analysis were subjected to sequence analysis. How-
ever, for five cell lines there were no segments with ab-

normal SSCP migration, and all of the PCR-amplified
segments were sequenced. All sequence determinations
were performed on both strands. Manual cycle sequenc-
ing using [33P]dCTP was performed by use of either the
Amplicycle (Amersham) or the Thermo Sequenase (Per-
kin-Elmer) sequencing kit. The GC-rich first segment
was especially difficult to sequence, and better results
were obtained for that region by use of different primers
(segment 3a in table 1) and by automated sequence anal-
ysis (Aronovich et al. 1996), performed at the University
of Minnesota.

Constructs and Mutagenesis

A 2.5-kb human NAGLU cDNA containing the entire
coding region and the 3′ UTR was cloned into the ex-
pression vector pRC-CMV (Invitrogen) to produce the
plasmid pCMV-huNAGLU. The wild-type cDNA was
from clone 2a (Zhao et al. 1996b); because this clone
contained a deletion of a cytosine residue at position
942, it was repaired by substitution of a BspE1–BspE1
segment from clone 59 (Zhao et al. 1996b), containing
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Table 2

Mutations Found in Cell Lines from Patients with Sanfilippo Syndrome Type B

CELL LINE

MUTATION IN ALLELE 1 MUTATION IN ALLELE 2
METHOD OF

ANALYSISCodon Nucleotide Amino Acid Codon Nucleotide Amino Acid

GM 00737 CTGrCGG 2045 L682R TACrTGC 419 Y140C PCR, SSCPa

GM 01426 GAGrAAG 457 E153K GAGrAAG 457 E153K PCR, SSCPa

GM 02931 CCGrCTG 1073 P358L CCGrCTG 1073 P358L PCR, SSCPa

IT 41 CCArTCA 343 P115S CCArTCA 343 P115S PCRb

IT 236 TACrTGC 419 Y140C Not identified ) ) PCRb

IT 310 TACrTGC 419 Y140C TACrCAC 274 Y92H PCRb

IT 421 ) 901delAA Frameshiftc ) 901delAA Frameshiftc PCRb

IT 424 ) 650insC Frameshiftd CCArTCA 343 P115S PCR, SSCP;a PCRb

B CGArTGA 607 R203X GCGrGTG 1991 A664V PCR, SSCPa

NOTE.—The mutant nucleotide position in cDNA was calculated from the A of the initiating AUG.
a Followed by sequence analysis of segment with abnormal electrophoretic mobility.
b Followed by sequence analysis of all fragments.
c Termination 55 codons downstream.
d Termination 14 codons downstream.

nucleotides 846–1492, for the corresponding segment of
clone 2a. The expression construct contained 6 bp of
the 5′ UTR and 190 bp of the 3′ UTR. In all but one
case, mutations in the NAGLU cDNA were generated
by two-step PCR (Landt et al. 1990). The first ampli-
fication used the NAGLU cDNA as a template, a primer
containing the desired mutation, and a second oligon-
ucleotide primer (see Appendix, sets 1–4). The product
of the first PCR reaction was gel purified and was used
as one of the primers for the second PCR reaction. The
PCR segment resulting from this second step, which con-
tained the desired mutation, was digested with an ap-
propriate restriction enzyme, was gel purified, and was
cloned into the corresponding restriction sites of pCMV-
huNAGLU. In one case, Y92H, the mutation was gen-
erated by a different method—namely, by reverse-tran-
scriptase PCR using total RNA from cell line IT 310 as
a template (see Appendix, set 5). In each case the mu-
tagenized segment and adjoining regions were sequenced
to verify that no mutation other than the one desired
had been introduced during the procedure.

Transfections

The expression vectors were transfected into CHO
cells by electroporation (Bio-Rad Gene Pulser, 240 V,
960 mF). Transfected cells were selected by survival in
medium containing 0.75 mg G-418/ml. Approximately
500 positive colonies were pooled for further study. Ex-
pression of the transfected cDNA was verified by north-
ern analysis using 10 mg total RNA and a 2.1-kb cDNA
probe. For determination of enzyme activity, cells were
grown on 100-mm petri plates for 72 h, after being
seeded at a density of /plate, were transferred62.5 # 10
to 325 Protein-Free Medium (JRH Biosciences) supple-
mented with glutamine, and were grown to a dense cul-
ture. The cells in each plate were harvested in 1.0 ml of

10 mM Tris-HCl, pH 7.0, containing 0.5% Nonidet
P40. The medium was freed of cells by centrifugation.
Activity was assayed by the procedure described by
Chow and Weissmann (1981). A 25-ml volume of cell
suspension or of medium was mixed with 25 ml 0.2 mM
4-methylumbelliferyl-a-N-acetylglucosaminide (Calbi-
ochem) in 0.1 M Na acetate buffer, pH 4.3, containing
1 mg bovine serum albumin/ml. After incubation for 1
h at 37�C , the reaction was terminated by addition of
1 ml 0.5 M glycine-NaOH, pH 10.3, for the fluorometric
determination of the amount of 4-methylumbelliferone
released in the enzyme reaction. Protein concentration
was measured by the bicinchoninic acid assay (Smith et
al. 1985), by use of a reagent kit from Pierce.

Results

The mutations identified in this study are presented
in table 2. When two mutations were found, they were
assumed to be on separate alleles; this was formally ver-
ified only in the case of patient B, whose parents’ cell
lines were shown to each carry only one of the muta-
tions. Several points should be noted: (1) four of the
nine cell lines studied were homozygous for a mutation;
(2) eight mutations were found in only one cell line; and
(3) one mutation (Y140C) was observed in three cell
lines, and another (P115S) was observed in two cell lines.

The effect of the missense mutations was investigated
in an expression system, by use of CHO cell lines stably
transfected with an expression vector containing
NAGLU cDNA that had been mutagenized to corre-
spond to the missense mutations found in this study, as
well as to the two missense mutations (R643H and
R674H) identified elsewhere (Zhao et al. 1996a) (table
3). Successful transfection of the NAGLU expression
constructs was verified by northern analysis (data not
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Table 3

a-N-Acetylglucosaminidase Activity in CHO Cell Lines Transfected
with Wild-Type and Mutagenized NAGLU cDNA

TRANSFECTION VECTOR

a-N-ACETYLGLUCOSAMINIDASE

ACTIVITY

(nmol/h/mg cell protein)

Intracellular Secreteda

None 2.8 .8
pRCCMV 2.5 1.0
pCMVhuNAGLU (wild type) 61.5 14.9
pCMVhuNAGLU-Y92H 2.7 .6
pCMVhuNAGLU-Y140C 2.5 .8
pCMVhuNAGLU-E153K 2.2 .6
pCMVhuNAGLU-P358L 2.4 .7
pCMVhuNAGLU-A643H 2.5 .7
pCMVhuNAGLU-A664V 3.0 .7
pCMVhuNAGLU-R674H 2.0 .7
pCMVhuNAGLU-L682R 2.8 .8

a Over 24 h.

Figure 1 Map of NAGLU mutations identified in cell lines of Sanfilippo syndrome type B patients. Boxes denote exons (hatched portions
denote the coding regions) and are drawn to scale. Blackened triangles denote deletions (503del110 and 901delAA); the blackened square
denotes an insertion (652insC); unblackened circles denote nonsense mutations (R203X, R297X, R626X, and Q706X); and blackened circles
denote missense mutations (Y92H, P115S, Y140C, E153K, P358L, S612G, A664V, R674H, and L682R).

shown). In contrast with CHO cells transfected with the
wild-type NAGLU cDNA, which had a high level of a-
N-acetylglucosaminidase activity both inside the cells
and in the medium, none of those transfected with cDNA
with the respective mutations had activity above the level
of CHO cells that had not been transfected or had been
transfected with the vector alone. Approximately 2% of
the intracellular and approximately 5% of the extra-
cellular enzyme activity of the wild-type construct could
have been detected, if present, by the assay used.

Discussion

In figure 1, the 17 mutations identified in Sanfilippo
syndrome type B, in this study and in earlier studies
(Aronovich et al. 1996; Zhao et al. 1996a), are shown
at their location on the NAGLU gene. They include 10
missense, 4 nonsense, and 3 frameshift mutations. No
large deletions or major DNA rearrangements have been
found yet. Only three mutations have been observed in
more than one cell line: Y140C has been observed three
times, P115S twice, and R674H twice. The two patients
with the R674H mutation were from the same ethnic
group (Arab), but we do not know whether they were

related (Zhao et al. 1996a). The two patients with P115S
come from the same region in southern Italy but are not
known to be related; since the P115S homozygote is not
from a consanguineous family, the mutation may be
common in that region. Two patients with Y140C orig-
inated from another area of Italy, but the provenance of
the third patient (GM 00737) is not known. Seven mu-
tations were found in homozygosity, with consanguinity
known or suspected for three of them. Although the
small number of cell lines tested and the dearth of in-
formation about cells from the Human Genetic Mutant
Cell Repository limits the conclusions that can be drawn
about the distribution of NAGLU mutations, it appears
that Sanfilippo syndrome type B is very heterogeneous
at the molecular level (with some mutations common
only in specific geographic areas) and that the mutations
often may be revealed by consanguineous marriages.

The nonsense codons or the frameshifts that lead to
a nonsense codon downstream can be assumed to be
disease-producing mutations, since a truncated protein
or possibly no protein at all would result from the pre-
mature termination. The deleterious nature of nine mis-
sense mutations was demonstrated, in this study, by in-
troduction of mutagenized cDNAs into overexpressing
cells. Although mRNA was expressed, no functional en-
zyme was found either in the cells or in the medium.

It is interesting to note that the amino acid substitu-
tions identified here or published earlier are not ran-
domly distributed. Nine of the 10 are clustered in two
regions of the protein, 4 between codons 92 and 153
and 5 between codons 612 and 682 (fig. 1) . All the
substitutions are of amino acids that are conserved be-
tween the human and the mouse cDNAs (the mouse
cDNA sequence has been deposited in the GenBank da-
tabase, accession number MMU85247). Although it is
premature to draw conclusions, these regions may be
especially important for the folding and transporting out
of the endoplasmic reticulum and/or for the acquisition
of catalytic activity. The availability of stably transfected
cell lines will make it possible to perform studies to dis-
criminate between these possibilities.



68 Am. J. Hum. Genet. 62:64–69, 1998

Acknowledgments

We thank Dr. Gideon Bach, of the Hadassah Medical Center
in Jerusalem, for cells from the family of patient B. This work
was supported, in part, by NIH grant NS22376 (to E.F.N.),
by NIH fellowship NS 10141 (to H.H.L.), by fellowships from
the Wenner-Gren Center Foundation and the Hellmuth Hertz
Foundation (to A.S.), and by a grant from the Children’s Med-
ical Research Foundation, Inc. (to C.B.W. and H.G.Z.). Z.Z.
was an Associate of the Howard Hughes Medical Institute.

Appendix

Oligonucleotides for Mutagenesis of cDNA

In each of the following sets, the mutant nucleotide
is underlined.

Set 1

Antisense oligonucleotides with mutation: P115S, 5′-
CGGCACGGCTGACAGTGGCCGCGG; Y140C, 5′-
CACACGAAGGAGCAGCTTTGCGTGC; and E153K,
5′-CATCCAGTCTATCTTTCGCTCCCAGCGGG.

Sense primer for first-step PCR: 5′-AAGCCGGGC-
TTGGACACC.

Antisense primer for second-step PCR: 5′-CTGCAG-
TCATGGCCTCATAGA.

Restriction sites for cloning: PmlI and Bsu36I.

Set 2

Antisense oligonucleotide with mutation: P358L, 5′-
GCCCCCAGAACTGCAGCTGGTGCTGGAAG.

Sense primer for first-step PCR: 5′-CTGCATTCG-
CGGGGCATGTT.

Antisense primer for second-step PCR: 5′-TAGCCT-
CCACGCTGCCCC.

Restriction sites for cloning: Bsu36I and Bpu1102I.

Set 3

Antisense oligonucleotides with mutation: R643H, 5′-
GGTCAGCTGGTAGTGGCTGTTCTGCTC.

Sense primer for first-step PCR: 5′-GCGTGGAGG-
CTACTGCT.

Antisense primer for second-step PCR: 5′-TTTAAT-
CCCACACTTTGGGTGGT.

Restriction sites: PflMI and PflMI.

Set 4

Sense oligonucleotides with mutation: A664V, 5′-
CAAGCAGCTGGTGGGGTTGGTGGC; R674H, 5′-
CTACTACACCCCTCACTGGCGGCTTTTCC; and

L682R, 5′-CTTTTCCTGGAGGCGCGGGTTGACAG-
TGTGGCC.

Antisense primer for first-step PCR: 5′-TTTAATCCC-
ACACTTTGGGTGGT.

Sense primer for second-step PCR: 5′-GCGTGGAGG-
CTACTGCT.

Restriction sites: PflMI and PflMI.

Set 5

Antisense primer for reverse transcription and PCR:
5′-CTGCAGTCATGGCCTCATAGA.

Sense primer for PCR: 5′-AAGCCGGGCTTGGAC-
ACC.

Restriction sites: PmlI and Bsu36I.
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